8,209 research outputs found

    Stochastic dynamics of adhesion clusters under shared constant force and with rebinding

    Full text link
    Single receptor-ligand bonds have finite lifetimes, so that biological systems can dynamically react to changes in their environment. In cell adhesion, adhesion bonds usually act cooperatively in adhesion clusters. Outside the cellular context, adhesion clusters can be probed quantitatively by attaching receptors and ligands to opposing surfaces. Here we present a detailed theoretical analysis of the stochastic dynamics of a cluster of parallel bonds under shared constant loading and with rebinding. Analytical solutions for the appropriate one-step master equation are presented for special cases, while the general case is treated with exact stochastic simulations. If the completely dissociated state is modeled as an absorbing boundary, mean cluster lifetime is finite and can be calculated exactly. We also present a detailed analysis of fluctuation effects and discuss various approximations to the full stochastic description.Comment: Revtex, 29 pages, 23 postscript figures included (some with reduced image quality

    Noise-Induced Transition from Translational to Rotational Motion of Swarms

    Full text link
    We consider a model of active Brownian agents interacting via a harmonic attractive potential in a two-dimensional system in the presence of noise. By numerical simulations, we show that this model possesses a noise-induced transition characterized by the breakdown of translational motion and the onset of swarm rotation as the noise intensity is increased. Statistical properties of swarm dynamics in the weak noise limit are further analytically investigated.Comment: 7 pages, 7 figure

    Collective motion of active Brownian particles in one dimension

    Full text link
    We analyze a model of active Brownian particles with non-linear friction and velocity coupling in one spatial dimension. The model exhibits two modes of motion observed in biological swarms: A disordered phase with vanishing mean velocity and an ordered phase with finite mean velocity. Starting from the microscopic Langevin equations, we derive mean-field equations of the collective dynamics. We identify the fixed points of the mean-field equations corresponding to the two modes and analyze their stability with respect to the model parameters. Finally, we compare our analytical findings with numerical simulations of the microscopic model.Comment: submitted to Eur. Phys J. Special Topic

    Qualification Procedures of the CMS Pixel Barrel Modules

    Full text link
    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.Comment: 7 Pages, 7 Figures. Contribution to Pixel 2005, September 5-8, 2005, Bonn, Germna

    Concepts, Developments and Advanced Applications of the PAX Toolkit

    Get PDF
    The Physics Analysis eXpert (PAX) is an open source toolkit for high energy physics analysis. The C++ class collection provided by PAX is deployed in a number of analyses with complex event topologies at Tevatron and LHC. In this article, we summarize basic concepts and class structure of the PAX kernel. We report about the most recent developments of the kernel and introduce two new PAX accessories. The PaxFactory, that provides a class collection to facilitate event hypothesis evolution, and VisualPax, a Graphical User Interface for PAX objects

    L-selectin mediated leukocyte tethering in shear flow is controlled by multiple contacts and cytoskeletal anchorage facilitating fast rebinding events

    Full text link
    L-selectin mediated tethers result in leukocyte rolling only above a threshold in shear. Here we present biophysical modeling based on recently published data from flow chamber experiments (Dwir et al., J. Cell Biol. 163: 649-659, 2003) which supports the interpretation that L-selectin mediated tethers below the shear threshold correspond to single L-selectin carbohydrate bonds dissociating on the time scale of milliseconds, whereas L-selectin mediated tethers above the shear threshold are stabilized by multiple bonds and fast rebinding of broken bonds, resulting in tether lifetimes on the timescale of 10110^{-1} seconds. Our calculations for cluster dissociation suggest that the single molecule rebinding rate is of the order of 10410^4 Hz. A similar estimate results if increased tether dissociation for tail-truncated L-selectin mutants above the shear threshold is modeled as diffusive escape of single receptors from the rebinding region due to increased mobility. Using computer simulations, we show that our model yields first order dissociation kinetics and exponential dependence of tether dissociation rates on shear stress. Our results suggest that multiple contacts, cytoskeletal anchorage of L-selectin and local rebinding of ligand play important roles in L-selectin tether stabilization and progression of tethers into persistent rolling on endothelial surfaces.Comment: 9 pages, Revtex, 4 Postscript figures include

    Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout

    Get PDF
    The 9600 channels of the multi-wire proportional chamber of the H1 experiment at HERA have to be read out within 96 ns and made available to the trigger system. The tight spatial conditions at the rear end flange require a compact bidirectional readout electronics with minimal power consumption and dead material. A solution using 40 identical optical link modules, each transferring the trigger information with a physical rate of 4 x 832 Mbps via optical fibers, has been developed and commisioned. The analog pulses from the chamber can be monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure

    Dynamic force spectroscopy on multiple bonds: experiments and model

    Full text link
    We probe the dynamic strength of multiple biotin-streptavidin adhesion bonds under linear loading using the biomembrane force probe setup for dynamic force spectroscopy. Measured rupture force histograms are compared to results from a master equation model for the stochastic dynamics of bond rupture under load. This allows us to extract the distribution of the number of initially closed bonds. We also extract the molecular parameters of the adhesion bonds, in good agreement with earlier results from single bond experiments. Our analysis shows that the peaks in the measured histograms are not simple multiples of the single bond values, but follow from a superposition procedure which generates different peak positions.Comment: to appear in Europhysics Letter

    Stability of adhesion clusters under constant force

    Full text link
    We solve the stochastic equations for a cluster of parallel bonds with shared constant loading, rebinding and the completely dissociated state as an absorbing boundary. In the small force regime, cluster lifetime grows only logarithmically with bond number for weak rebinding, but exponentially for strong rebinding. Therefore rebinding is essential to ensure physiological lifetimes. The number of bonds decays exponentially with time for most cases, but in the intermediate force regime, a small increase in loading can lead to much faster decay. This effect might be used by cell-matrix adhesions to induce signaling events through cytoskeletal loading.Comment: Revtex, 4 pages, 4 Postscript files include

    Active Brownian Motion Models and Applications to Ratchets

    Full text link
    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircase-like and Mateos ratchet potentials, also with the additional loads modeled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This \textit{stochastically driven directionality} effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussedComment: 12 pages, 17 figure
    corecore